新闻通知

首页 >> 新闻通知 >> 正文

Adv Fiber Mater: 柔性MXene/石墨烯基纤维织物,用于宽带电磁波吸收

发布者:     日期:2025年04月14日 17:55   点击数:  

1 成果简介

织物因其独特的网格结构、高导电性和柔韧性在电磁屏蔽领域备受关注。为了丰富纺织品在微波吸收方面的研究,本文,西南交通大学孟凡彬 教授、成都方大炭素研究院有限公司Jiamin Feng等研究人员在《Adv Fiber Mater》期刊发表名为“Design of Flexible MXene/Graphene-Based Fiber Fabrics for Broadband Electromagnetic Wave Absorption”的论文。研究采用湿法纺丝-离子交联-化学还原策略,合成了二维过渡金属碳化物(MXene)增强还原氧化石墨烯基织物(MXene/RGO 织物)。

MXene/RGO 织物在 17.6 GHz 频率下的最小反射损耗为 - 58.3 dB,厚度为 2.4 mm,有效吸收带宽为 4.92 GHz。此外,结合电磁有限元模拟技术和测试结果,进一步阐明了 MXene/RGO 纤维的响应模式和损耗机制。MXene/RGO 复合纤维表现出调谐衰减能力和阻抗匹配性能,这归因于 RGO、MXene 和 TiO2 颗粒之间的大量异质界面增加了极化弛豫损耗,以及适当的导电率(16.6 S/cm)。MXene/RGO 纤维具有优异的微波吸收性能、机械强度(534 兆帕)、易改性和抗疲劳性,有望在复杂环境中稳定吸收电磁波,从而拓展了织物在微波吸收领域的应用前景。

2 图文导读

图1、Synthesis of flexible microwave-absorbing fabrics。

图2、Morphological characterization of fibers. SEM image of fiber cross section: a RGO, b RGOM-1, c RGOM-2, d RGOM-3, and e RGOM-4. f, g Distribution of Ti in the cross section of RGOM-3 fiber, the inset is the corresponding SEM image. h, i TEM image and HRTEM image of the MXene/GO hybrid sheet. j The AFM image of a GO sheet. k The AFM image of an MXene sheet. l POM image of GO liquid crystal。

图3、Structural analysis of fibers. a FTIR spectra, b Raman spectra and c XRD spectra of the RGOM-x, RGO, GO, and MXene. d Full XPS spectra of the RGOM-3 and RGO. e–h Corresponding high-resolution C 1s, O 1s, Ti 2p, and Ca 2p spectra of the RGOM-3 fibers

图4、a Stress–strain curves of fibers. b Tensile strengths of the fibers. c Displacement‒force diagrams for cyclic compression of RGOM-3 fabric. d Diagram of the shrinkage mechanism of the fiber internal layer. e Conductivities of the fibers. f Optical photographs of fibers and fabrics。

图5、a, dCalculated reflection losses of RGOM-3 fabrics at 8–12 GHz and 12–18 GHz.b2D reflection loss plots of the RGOM-3 fabric at different thicknesses.e2D reflection loss plots of RGOM-x fabrics at 2.4 mm.candfAttenuation constant (α) of in the X and Ku bands. g,jTheε′ values of fabrics in the X and Ku band.h,kε′′ values of the fabrics in the X and Ku bands.i,lThe tan δε values of fabrics in the X and Ku bands。

图6、Cole-Cole curves of fabrics in the 8–12 GHz and 12–18 GHz bands: a and d RGO, b and e RGOM-3, c and f RGOM-4。

图7、The 2D mapping of the Z values of the RGOM-x fabrics. X band: a RGOM-1, b RGOM-2, c RGOM-3, d RGOM-4. Ku band: e RGOM-1, f RGOM-2, g RGOM-3, h RGOM-4。

图8、Electric field at 17.6 GHz for the a1 RGO fabric, b1 RGOM-1 fabric, and c1 RGOM-3 fabric. The surface current densities at 17.6 GHz for the a2 RGO fabric, b2 RGOM-1 fabric, and c2 RGOM-3 fabric. The volume loss densities at 17.6 GHz for the a3 RGO fabric, b3 RGOM-1 fabric, and c3 RGOM-3 fabric. d1-d3 Electric field, surface current density, and volume loss density at 8.8 GHz for the RGOM-3 fabric。

图9、Microwave absorption mechanism of MXene/RGO fabrics。

3 小结

本研究通过湿法纺丝-离子交联-化学还原的方法制备了具有优异微波吸收特性的基于MXene/RGO的柔性织物。采用Ca2+、PVA和戊二醛的多重交联策略,大规模制备了高强度、高韧性的多层RGOM纤维。通过调整 GO 和 MXene 的相对含量,可以控制纤维的整体电导率,从而优化阻抗匹配。同时,增加异质界面的数量可增强极化效应。在X波段,当厚度为3.7毫米时,RGOM-3 纤维在 8.8 千兆赫频率下的RLmin值为-19.8分贝。此外,EAB 为 4 GHz,覆盖了整个 X 波段。在Ku波段,当 RGOM-3 厚度为 2.4 mm、频率为 17.6 GHz 时,RLmin 为 - 58.3 dB,EAB 为 4.92 GHz。当厚度为 2.6-3 mm 时,EABmax 为 6 GHz,完全覆盖了 Ku 波段。因此,这项研究优化了石墨烯和 MXenes 之间的层间相互作用,构建了一种独特的层间交错结构,为设计和合成具有高吸收效率和宽吸收带宽的织物提供了一种可行的方法。

文献:https://doi.org/10.1007/s42765-025-00523-y

Adv Fiber Mater: 柔性MXene/石墨烯基纤维织物,用于宽带电磁波吸收

2025年04月14日 17:55 21次浏览

1 成果简介

织物因其独特的网格结构、高导电性和柔韧性在电磁屏蔽领域备受关注。为了丰富纺织品在微波吸收方面的研究,本文,西南交通大学孟凡彬 教授、成都方大炭素研究院有限公司Jiamin Feng等研究人员在《Adv Fiber Mater》期刊发表名为“Design of Flexible MXene/Graphene-Based Fiber Fabrics for Broadband Electromagnetic Wave Absorption”的论文。研究采用湿法纺丝-离子交联-化学还原策略,合成了二维过渡金属碳化物(MXene)增强还原氧化石墨烯基织物(MXene/RGO 织物)。

MXene/RGO 织物在 17.6 GHz 频率下的最小反射损耗为 - 58.3 dB,厚度为 2.4 mm,有效吸收带宽为 4.92 GHz。此外,结合电磁有限元模拟技术和测试结果,进一步阐明了 MXene/RGO 纤维的响应模式和损耗机制。MXene/RGO 复合纤维表现出调谐衰减能力和阻抗匹配性能,这归因于 RGO、MXene 和 TiO2 颗粒之间的大量异质界面增加了极化弛豫损耗,以及适当的导电率(16.6 S/cm)。MXene/RGO 纤维具有优异的微波吸收性能、机械强度(534 兆帕)、易改性和抗疲劳性,有望在复杂环境中稳定吸收电磁波,从而拓展了织物在微波吸收领域的应用前景。

2 图文导读

图1、Synthesis of flexible microwave-absorbing fabrics。

图2、Morphological characterization of fibers. SEM image of fiber cross section: a RGO, b RGOM-1, c RGOM-2, d RGOM-3, and e RGOM-4. f, g Distribution of Ti in the cross section of RGOM-3 fiber, the inset is the corresponding SEM image. h, i TEM image and HRTEM image of the MXene/GO hybrid sheet. j The AFM image of a GO sheet. k The AFM image of an MXene sheet. l POM image of GO liquid crystal。

图3、Structural analysis of fibers. a FTIR spectra, b Raman spectra and c XRD spectra of the RGOM-x, RGO, GO, and MXene. d Full XPS spectra of the RGOM-3 and RGO. e–h Corresponding high-resolution C 1s, O 1s, Ti 2p, and Ca 2p spectra of the RGOM-3 fibers

图4、a Stress–strain curves of fibers. b Tensile strengths of the fibers. c Displacement‒force diagrams for cyclic compression of RGOM-3 fabric. d Diagram of the shrinkage mechanism of the fiber internal layer. e Conductivities of the fibers. f Optical photographs of fibers and fabrics。

图5、a, dCalculated reflection losses of RGOM-3 fabrics at 8–12 GHz and 12–18 GHz.b2D reflection loss plots of the RGOM-3 fabric at different thicknesses.e2D reflection loss plots of RGOM-x fabrics at 2.4 mm.candfAttenuation constant (α) of in the X and Ku bands. g,jTheε′ values of fabrics in the X and Ku band.h,kε′′ values of the fabrics in the X and Ku bands.i,lThe tan δε values of fabrics in the X and Ku bands。

图6、Cole-Cole curves of fabrics in the 8–12 GHz and 12–18 GHz bands: a and d RGO, b and e RGOM-3, c and f RGOM-4。

图7、The 2D mapping of the Z values of the RGOM-x fabrics. X band: a RGOM-1, b RGOM-2, c RGOM-3, d RGOM-4. Ku band: e RGOM-1, f RGOM-2, g RGOM-3, h RGOM-4。

图8、Electric field at 17.6 GHz for the a1 RGO fabric, b1 RGOM-1 fabric, and c1 RGOM-3 fabric. The surface current densities at 17.6 GHz for the a2 RGO fabric, b2 RGOM-1 fabric, and c2 RGOM-3 fabric. The volume loss densities at 17.6 GHz for the a3 RGO fabric, b3 RGOM-1 fabric, and c3 RGOM-3 fabric. d1-d3 Electric field, surface current density, and volume loss density at 8.8 GHz for the RGOM-3 fabric。

图9、Microwave absorption mechanism of MXene/RGO fabrics。

3 小结

本研究通过湿法纺丝-离子交联-化学还原的方法制备了具有优异微波吸收特性的基于MXene/RGO的柔性织物。采用Ca2+、PVA和戊二醛的多重交联策略,大规模制备了高强度、高韧性的多层RGOM纤维。通过调整 GO 和 MXene 的相对含量,可以控制纤维的整体电导率,从而优化阻抗匹配。同时,增加异质界面的数量可增强极化效应。在X波段,当厚度为3.7毫米时,RGOM-3 纤维在 8.8 千兆赫频率下的RLmin值为-19.8分贝。此外,EAB 为 4 GHz,覆盖了整个 X 波段。在Ku波段,当 RGOM-3 厚度为 2.4 mm、频率为 17.6 GHz 时,RLmin 为 - 58.3 dB,EAB 为 4.92 GHz。当厚度为 2.6-3 mm 时,EABmax 为 6 GHz,完全覆盖了 Ku 波段。因此,这项研究优化了石墨烯和 MXenes 之间的层间相互作用,构建了一种独特的层间交错结构,为设计和合成具有高吸收效率和宽吸收带宽的织物提供了一种可行的方法。

文献:https://doi.org/10.1007/s42765-025-00523-y